INTECOL 2012

Tidal transport of DOC, Hg, and MeHg, from Shark River Estuary, Everglades NP

BA Bergamaschi, <u>DP Krabbenhoft</u>, GR Aiken, DG Rumbold, E Patino and WH Orem

With special thanks to GO Krupp and SD Ploos

Tidally Driven Export of Dissolved Organic Carbon, Total Mercury, and Methylmercury from a Mangrove-Dominated Estuary

Brian A. Bergamaschi,^{*,†} David P. Krabbenhoft,[‡] George R. Aiken,[§] Eduardo Patino,^{||} Darren G. Rumbold,[⊥] and William H. Orem[#] *Environ. Sci. Technol.* 2012, 46, 1371–1378

Background and motivations

The fate and transport of <u>total and methyl mercury</u> in almost all aquatic environments is completely intertwined with the source, fate, and transport of DOM. (Aiken et al., 2011)

DOM flux <u>from mangroves</u> represents a large fraction of the global flux of DOM to the oceans. (Dittmar et al, 2006)

Measuring fluxes in tidal systems is hard, but <u>**DOM absorbance**</u> <u>and fluoresence</u> can be used to quantify the flux of mercury and methyl mercury in tidal wetlands. (Bergamaschi et al., 2011, Bergamaschi et al., 2012)

Problem(s)

- In coastal SW Florida, there is high mercury in fish, but.....
 - Not from inflows (Rumbold et al. 2010)
 - MeHg might be from sediments (Rumbold et al. 2010)
- Flux of DOC and Hg from mangroves is not well constrained (Bouillon et al. 2008)

<u>Could</u> the flux from mangroves into coastal waters be significant?

Things you should know (if you don't already)

- DOC flux from mangroves represents 10% of the terrestrial DOC flux to the oceans, even though 0.1% of area – DOM flux approximately the same as the Amazon DOM flux (Dittmar et al. 2006)
- MeHg is the form of mercury that bioaccumulates in food webs.
- Mangroves swamps represent ideal conditions for methylation of mercury.
- Mangroves have among the highest leaf tissue concentrations of THg and MeHg (Ding et al. 2011)

- Shark River
 Estuary
- Wet season and dry season sampling campaigns
- Continuous measurements at <u>Gunboat</u> <u>Island</u>

Study Area

Measurements

• Lab

(discrete samples at stations indicated on map)

- DOC
- Full absorbance and fluoresence
- THg
- MeHg

• In Situ

(continuous measurements at Gunboat Island)

- Discharge
 - ADCP
 - Rated
- FDOM (ex370 em420)
 - WetLabs Wetstar
- Stage
- Salinity
- DO, pH, temperature

Gunboat Island September 2010

Gunboat Island September 2010

Important features of this method

- Integrates over a broad area
- Integrates over long time scales (multiple tides, spring-neap, seasonal, etc.)
- Captures events and ephemeral processes (storms, rain, wind direction, changes in barometric pressure, etc.)

Yield per unit area

- DOC was 180 ± 12.6 g C m⁻² yr⁻¹.
 - Compares well to the 44 to 381 g C m⁻² yr⁻¹ range summarized in a recent review (Bouillon et al. 2008).
- FTHg was 28 \pm 4.5 μg m $^{-2}$ yr $^{-1}$,
 - Among the highest previously reported for FTHg flux in wetlands (Shanley et al. 2008; St Louis et al. 1994; Krabbenhoft et al. 1995)
 - Higher than atmospheric deposition likely from canopy capture (Ding et al. 2011).
- FMeHg was $3.1 \pm 0.4 \ \mu g \ m^{-2} \ yr^{-1}$,
 - 10x 100x generally reported values (e.g. Schwesig and Matzner 2001; Shanley et al. 2008; Brigham et al. 2009).
 - Near the previously published value of 2.5 $\mu g~m^{-2}~yr^{-1}$ for tidal tule wetland (Bergamaschi et al. 2011)

How big <u>could</u> fluxes of DOC, Hg and MeHg from mangroves be in comparison to other sources?

- Extrapolated over 1400 km² of mangroves in SW Florida
- Compared to 5000 km² of coastal waters

Source	DOC	Total	Methyl
		Mercury	Mercury
Mangroves	250 MT	55 kg	6.5 kg
Sediments/Water	750000 MT	-	0.6 kg
Rainfall	Negligible	130 kg	Negligible
Mangrove %	<1%	30%	90%

Conclusions

- Tidal pumping from mangroves is important
 Should be included in regional budgets
- FDOM is a good proxy, easily measured in situ.
 Continuous measurements are possible
- Tidal systems are dynamic cannot extrapolate from one or a few tides and get the right answer.

– *Need continuous measurements*

 Large fluxes of MeHg from mangroves (if proven out by future studies) may help explain high concentrations in coastal fish in GOM

– Need long term studies

Tidally Driven Export of Dissolved Organic Carbon, Total Mercury, and Methylmercury from a Mangrove-Dominated Estuary

Brian A. Bergamaschi,^{*,†} David P. Krabbenhoft,[‡] George R. Aiken,[§] Eduardo Patino,[∥] Darren G. Rumbold,[⊥] and William H. Orem[#] *Environ. Sci. Technol.* 2012, 46, 1371–1378

Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements.

Bergamaschi, B. A.; Fleck, J. A.; Downing, B. D.; Boss, E.; Pellerin, B.; Ganju, N. K.; Schoellhamer, D.; Heim, W.; Stephenson, M.; Fujii, R.

Limnol. Oceanogr. 2011, 56 (4), 1355-1371

Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements.

Downing, B. D.; Boss, E.; Bergamaschi, B. A.; Fleck, J. A.; Lionberger, M. A.; Ganju, N. K.; Schoellhamer, D. H.; Fujii, R.

Limnol. Oceanogr.: Methods. 2009, 7, 119–131.

bbergama@usgs.gov

papers available at: http://profile.usgs.gov/bbergama/